

Demand Response in Commercial Buildings Presenters: Matt Bye, Susanna Hanson, Trevor Joelson and Chuck Lanager with Jeanne Harshaw (host)

Trane program number: APP-CMC064-EN

Agenda

Trane Engineers Newsletter Live Series

Demand Response in Commercial Buildings

Abstract

Advanced building designs and component technology continue to reduce loads and embrace features such as thermal mass to shift cooling and heating loads to more advantageous times of day. At the same time, utilities and campuses are increasing efforts to include renewable energy that require more advanced energy storage and demand response strategies to balance generation and consumption. Stretch codes and labelling programs have begun to specifically recognize building designs and operations that incorporate these features. For example, version 4 of the U.S. Green Building Council's LEED® rating program includes up to two credits for building designs that include demand response.

This program discusses the relevant improvements that load shifting and demand response can provide, with examples of the types of utility and funding programs that are available.

Presenters: Trane engineers Matt Bye, Trevor Joelson, Susanna Hanson and Chuck Lanager

After viewing attendees will be able to:

- 1. Identify types of programs/capabilities that would be considered demand response
- 2. Summarize where these programs are most likely available today and where new opportunities are forming
- 3. Compare various financial vehicles that are available for demand response
- 4. Summarize different strategies that can generate revenue and/or save energy cost

Agenda

- Definition of Demand Response
- Evolution of Markets
- Evolution of Products
- Current Opportunities
- Future Opportunities

Presenter biographies

Demand Response in Commercial Buildings

Chuck Lanager | Director of Energy Operations | Trane Energy Supply Services (ESS)

Chuck is the Director of Energy Operations for Trane's Energy Supply Services (ESS) business. Chuck joined ESS in 2010 and leads the ESS business' procurement and 24/7 power control center (PCC) teams. Chuck has over 30 years of energy supply services experience through his work with regulated utilities and non-regulated businesses nationally including co-founding his own electricity trading and consulting business in 2007. His areas of expertise include retail electricity supply and rates, wholesale electricity markets and generation, state and federal energy regulations, and renewable energy contracting. Chuck holds a degree in electrical engineering from the Pennsylvania State University.

Susanna Hanson | systems engineer | Trane

Susanna is an applications engineer at Trane with over 15 years of experience with chilled-water systems and HVAC building load and energy analysis. Her primary responsibility is to aid system design engineers and Trane personnel in the proper design and application of HVAC systems. Her main areas of expertise include chilled-water systems and ASHRAE Standard 90.1. She is also a Certified Energy Manager.

Susanna has authored several articles, manuals and system catalogs on chilled-water plant design, and is a member of ASHRAE SSPC 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings. Susanna earned a bachelor's degree in industrial and systems engineering from the University of Florida, where she focused on building energy management and simulation.

Trevor Joelson | energy services business development | Trane

Trevor joined Trane Energy Supply Services in August of 2011. In his role as Account Manager, Trevor partners with Trane offices and customers to ensure they achieve low cost electricity and natural gas supply in coordination with their high-performing buildings. Trane customers obtain particular benefit from Trevor's thought leadership in deregulated energy markets. Trevor received his Bachelor of Arts degree in Sport Administration with minors in Marketing and Political Science from the University of Louisville in Louisville, Kentucky.

Matt Bye | portfolio manager, utility and grid solutions | Trane Energy Services

Matt joined Trane in 2005 and has served multiple product management and strategy roles. Before Ingersoll Rand, Bye was product manager for utility solutions at Honeywell. Bye has also held a number of other positions including energy manager for the City of Minneapolis, product engineer on a number of EPRI products, and started his career as a utility demand side management project manager. He has led energy management product management for solutions ranging from real time pricing control to distributed generation.

Matt assumed his current role in 2016. In this role he works to manage and develop products, solutions and technology that complement Trane's utility and grid business strategies. This includes efforts to develop cloud based software, controls and automation technology, as well as behind the meter energy solutions. He earned his Bachelor of Science degree in Energy Management at Minnesota State University.

Copyrighted Materials

This presentation is protected by U.S. and international copyright laws. Reproduction, distribution, display, and use of the presentation without written permission of Trane is prohibited.

© 2017 Trane, a business of Ingersoll Rand. All rights reserved.

Learning objectives

- Define what is meant by a Demand Response program
- Summarize the current Demand Response opportunities available to commercial and industrial building owners
- Identify the types of demand Response products available today
- Summarize the steps to follow to determine whether your building can participate in Demand Response programs

Today's Presenters

Matt Bye Product Manager

Chuck Lanager Energy Operations Director

Trevor Joelson Business Development

Susanna Hanson Applications Engineer

Power: Generated, Transmitted, Distributed	
supply/generation	demand/load n)

APP-CMC064-EN

Utilities Need Demand Response Too

- Localized outages or overloading
- Cost of purchased power
- Capacity to meet currency and future customer loads

Renewables and Grid Financials

Solar over-generation on cool sunny days. Utilities have to pay to dump it

- Good news
 if you can use it
 and you know about it
- Bad news
 peak rates go up to
 compensate

Renewables' Impact on the Grid

Thermal energy storage

- Charges when other electric loads are low
- When the wind is blowing
- When the sun is shining

Why do we need Demand Response?

Energy stored for cooling

- Doesn't contribute to the problem
- Provides opportunities to correct for it
- Offloads solar when over-generation is least likely
- Reduces dirtiest peak power
- More likely to be used because it is doesn't affect customer

demand response Residential Programs

- Water heater
- HVAC
- Passive
- Utility driven

demand response Industrial Programs

- Industrial
 - Abrupt force rock crusher
 - Consistent force pump
 - Thermal smelter
- Utility Driven
 - Telephone, e-mail, pager
- Newer Opportunity
 - Bid into day ahead market

Evolution of Demand Response Products

- Involuntary brown out/black out
- Voluntary for emergency
- Utility rates demand charges, curtailable, interruptible, on/off peak
- Grid operator capacity charges
- Pay for performance
 - Emergency standby
 - Economic curtailment
- Load acting as a resource

Voluntary for Emergency

Excuse me, sir, but would you mind very much shutting down your business so that my lines don't burn down?

Utility Rates

- Demand charges
- On/off peak pricing
- Curtailable/interruptible rates

<section-header><list-item>

What's the Difference for DR?

- Regulated states: Utility is the only opportunity
- De-regulated states: Utility and grid operator opportunities
- Both: Opportunities to reduce costs by controlling demand
- Grid operator/de-regulated markets: Opportunities to generate revenue

ENERGY www.pge.com	STATEMENT n/MyEnergy		Account No: Statement Date: Due Date:	9135050472-5 08/23/2016 09/09/2016	just lower your
Details of Electric 17/22/2016 - 08/22/2 ervice For: 4145 DEL MAR A ervice Agreement ID: 913505 tate Schedule: A105X Mediu	Charges 2016 (32 billing days) IVE #2 0373 HEATING & AIR REPAIR m General Demand-Metered Service - TC	U	Service Information Meter # Total Usage Serial Rotating Outage Block	1008821358 16,064 112000 kWh Z 10G	demand
07/22/2016 – 07/31/2016 Customer Charge 1 Emergy Charges Peak Part Peak Part Peak Off Peak mergy Commission Tax	10 days @\$4.59959 88.544000 kW @\$17.84000 2,151.880000 kWh @\$0.21471 1,246.848000 kWh @\$0.15558 1,765.128000 kWh @\$0.13151	\$46.00 382.13 462.03 198.94 232.13 1.50			summer demand
08/01/2016 - 08/22/2016 ustomer Charge ternand Charge ¹ inergy Charges Peak Part Peak Off Peak Energy Commission Tax	22 days @ \$4.59959 64.896000 kW @ \$17.83000 5,002.288000 kWh @ \$0.21468 2,850.736000 kWh @ \$0.15955 3,047.432000 kWh @ \$0.13148	\$101.19 795.50 1,073.89 454.83 400.68 3.16		_	Based on consumption during on-peak hours

Utility DR Opportunity

Large commercial customers

LG&E and KU also offer a demand response program at no additional cost to large commercial customers who can support automated load management reductions.

Customers can earn monetary incentives participating in our Commercial Demand Conservation program. We help participants customize energy-reduction plans that help lessen the overall demand on the electric system for brief periods of time on particularly hot days during the summer. This helps lower energy consumption so utilities can better manage peak-load on its electric system.

This program offering is available through a partnership with EnerNOC – a leading provider of energy intelligence software and demand response solutions. Participating customers must commit to curtailing at least 50 kilowatts per dispatch event and can earn up to \$25 per kilowatt-year based on their energy reductions. Events may be scheduled in the months of June, July, August and September.

Source: www.lge-ku.com

I CzE

Utility DR Opportunity

HOME / BUSINESS / SAVE ENERGY / LOAD MANAGEMENT PROGRAM

Load Management Program

The Load Management program lets you earn credits towards your facility's monthly electric bill when you allow Tampa Electric control the operation of air conditioning or specialized equipment during critical energy-use periods. During these high-energy use periods, the program assists Tampa Electric by deferring the need to construct additional power plants or purchase power from external sources. Both new and existing construction projects quality for Load Management credits.

How the program works

You select the equipment in your facility that can be turned off during high energy-use periods without affecting your daily operations. For example, Tampa Electric may briefly interrupt power to your air conditioner, much the same way the air conditioning cycles on and off during normal operations.

At no cost to you, Tampa Electric will install control equipment necessary to temporarily interrupt power to the equipment you choose – such as air conditioning or even specialized refrigeration equipment – when there's a need to meet the demand for electricity.

In return, you will receive a credit for the kilowatt (KW) demand you helped reduce, based on the equipment's rating. The credit will appear as a separate line item on your monthly bill, showing the amount you receive for participating.

You may choose from two Load Management programs:

Summary DR for Local Utilities

	Availability	Structure	Opportunity Size (estimate)	Cash Flow	Partner
Demand Management	Monthly	No Contract	\$2 - \$30 per kW month	Savings to Bill	Utility
Utility DR	Utility Dependent	Contract Likely	\$20 - \$30 per kW annually	Savings to Bill	Utility

Grid Products and Their Solutions

Grid Products	Response Time	Traditional Solutions	Alternative Solutions
Capacity	Hourly Schedule	Nuclear	Controllable building loads
Energy	Hourly Schedule	Coal Hydro	Batteries Thermal storage
Ancillary Services		Combined Cycle	Compressed Air
30 Minute Reserves	30 Minutes	Gas Peaker	Pumped storage
10 Minute Reserves	10 Minutes	18m	Flywheels
Load Following	5 Minutes		
Regulating Reserves	2-4 Seconds		Behind the meter solutions
Frequency Response	0.2-0.5 Seconds		

In Deregulated Power Markets

ӯре	Availability	Structure	Opportunity Size (estimate)	Cash Flow	Partner
Grid Demand Response	All Year	Contract	\$15 - \$50 per kW per period	Revenue	Aggregator
ponse			kw per period		

Grid Operator Charges

Wholesale electric grid operators assess costs to end-users based on the building's demand during their system peak(s)

Billing of Grid Operator Charges

- Costs of coincidental peak demand are charged through the electricity supplier
- Many times presented as a fixed \$/kWh rate
- Limits price transparency and visibility to opportunity

Peal Load Management Reduce Capacity Charges

Passive methods avoid or reduce energy demand

- For example from 3-6 pm in the summer
- Thermal storage automated, no compromise
- Chiller retrofit compressor change out
- Last year's lighting retrofit

Reduce Capacity Charges

Avoid or reduce energy demand – every day

- On peak rates
- e.g. 3-6 pm in summer
- 6-10 am in winter
- Thermal storage automated, no compromise
- Chiller retrofit compressor change out, upgrades
- Last year's lighting retrofit

Reduce capacity charges

Proactive/reactive methods – in response to signal or hunch Shutting off equipment

- Demand/amp limiting chillers
- Turning off lights
- Controlled duty cycling
- Process control
- Conserving stored energy
- Onsite power generation

Curtailment, interruptible rates - a lower price all the time

Year	Annual Usage (kWh)	Coincidental Peak (kw)	2017 Capacity Cost (kW Month)	Annual Cost	\$/kWh
2015	2,870,000	820	\$15.00	\$147,600	\$0.0514
2016	2,870,000	658	\$15.00	\$118,440	\$0.0412
 Reduct 3:00 - Saved 	ed deman - 4:00 PM \$29,160 c	d 162 kW o on their 201	n August 7 electrici	12, 2016 ity supply o	costs.

Гуре	Availability	Structure	Opportunity Size (estimate)	Cash Flow	Partner
Grid Cost Management	Summer	No Contract	\$15 - \$150 per kW annually	Savings to Supply Bill	Consultant

summary Demand Response Opportunities					
Availability	Structure	Opportunity Size (estimate)	Cash Flow	Partner	
Monthly	No Contract	\$2 - \$30 per kW month	Savings to Bill	Utility	
Utility Dependent	Contract Likely	\$20 - \$30 per kW annually	Savings to Bill	Utility	
All Year	Contract	\$15 - \$50 per kW per period	Revenue	Aggregator	
Summer	No Contract	\$15 - \$150 per kW annually	Savings to Supply Bill	Consultant	
	ry nd Resp Availability Monthly Utility Dependent All Year Summer	AvailabilityStructureMonthlyNo ContractUtility DependentContract LikelyAll YearContractSummerNo Contract	ry ad Response Opportunity StructureAvailabilityStructureOpportunity Size (estimate)MonthlyNo Contract\$2 - \$30 per kW monthUtility DependentContract Likely\$20 - \$30 per kW annuallyAll YearContract\$15 - \$50 per kW per periodSummerNo Contract\$15 - \$150 per kW annually	ry ad Response Opportunity StructureOpportunity Size (estimate)Cash FlowMonthlyNo Contract\$2 - \$30 per kW monthSavings to BillUtility DependentContract Likely Contract\$20 - \$30 per kW annuallySavings to BillAll YearContract\$15 - \$50 per kW per periodRevenueSummerNo Contract\$15 - \$150 per kW annuallySavings to	

FERC 719 Says Buildings Can Participate

Every Commission-approved independent system operator or regional transmission organization that operates organized markets based on competitive bidding for energy imbalance, spinning reserves, supplemental reserves, reactive power and voltage control, or regulation and frequency response ancillary services

.... must accept bids from demand response resources in these markets for that product on a basis comparable to any other resources, if the demand response resource meets the necessary technical requirements under the tariff....

rid Products	Response Time	Traditional Solutions	Alternative Solutions
Capacity	Hourly Schedule	Nuclear	Controllable building loads
Energy	Hourly Schedule	Coal Hvdro	Batteries Thermal storage
Ancillary Services		Combined Cycle	Compressed Air
30 Minute Reserves	30 Minutes	Gas Peaker	Pumped storage
10 Minute Reserves	10 Minutes	120	• Flywneels
Load Following	5 Minutes	111	
Regulating Reserves	2-4 Seconds		Behind the meter solutions
Frequency Response	0.2-0.5 Seconds		

S	Storag	je and	I Onsite Systems		1
	Frequency	Regulation	Spinning Reserve	Non Spinning	Other
	0 – 30 seconds	<mark>4 seconds – 5</mark> minutes	10 mins – 105 mins	10 mins – 105 mins	
ERCOT	Primary frequency response is not an Ancillary Service Market Product. All online Generation Resources must have their turbine governors in service and unblocked.	Regulation is deployed through ERCOT'S EMS system. The MW requirement for each hour of the day is determined monthly. The amount of MWs procured is based on the amount historically deployed and the amount of time in which	 ERCOT maintains a 10 minute eserve service of at least 2300 MW. This is for normal conditions and can go up to 2800 MW. Demand side resources can provide up to 50% of this MW requirement. It may be provided from the following: Unloaded Generation Resources that are On-line, Resources controlled by high set under-frequency relays, or Direct Current (DC) tie-line response. The DC tie-line response must be fully deployed within fifteen (15) seconds on the ERCOT System after the under frequency event. These reserves are maintained by ERCOT to restore the frequency of the ERCOT system within the first few minutes of an event that causes a significant deviation from the standard frequency. Load following energy and Non-spin reserves will be deployed as a practicable and if necessary to minimize the use of the 10 	Like Regulation the MW requirement for Non-spinning reserves is calculated for each hour of the day each month. Historical wind forecast errors and load forecast errors are used in determining the MW values. Non-spinning reserve service is a 30 minute product and is provided by : > Off-line	Primary frequency response is not an Ancillary Service Market Product. All online Generation Resources must have their turbine governors in service and unblocked.

Summary

- Things we can do today, with systems we already have
 - Save money/make money by manipulating energy use
 - Pool with others through aggregators
 - Partner with energy experts to predict and respond to peak events before they occur
- Things we can improve today
 - Install and upgrade equipment and controls
 - Install energy storage and energy generation assets

Trane *Engineers Newsletter LIVE:* Demand Response in Commercial Buildings APP-CMC064-EN QUIZ

- 1. This ENL classified motivation for demand response into three categories; stability, reliability and financial.
 - a. True
 - b. False
- 2. Less than 1 percent of the customers in the industrial segment contribute over 54 percent of overall demand reduction.
 - a. True
 - b. False
- 3. Which of the following are revenue opportunity programs currently available?
 - a. Emergency standby
 - b. Economic curtailment
 - c. Stabilization
 - d. Mandatory curtailment
 - 4. In a regulated market the utility is vertically integrated meaning they own, control and are responsible for generation, transmission and distribution of electricity.
 - a. True
 - b. False
- 5. Coincidental peak is a customer's demand during a grid operator's peak event or events.
 - a. True
 - b. False