

Trane Engineers Newsletter Live

State-of-the-Art Chilled-Water Systems

with Trane Engineers Susanna Hanson, Rick Heiden, Mick Schwedler, and Justin Wieman

Trane program number: APP-CMC076-EN March 2021 ©2021 Trane. All Rights Reserved.

Agenda

Trane Engineers Newsletter Live Series State-of-the-Art Chilled-Water Systems

Abstract

When designed using today's industry guidance, chilled water systems provide building owners and operators with flexibility to meet first cost and efficiency objectives, simplify maintenance and operation, and exceed energy code minimum requirements. Design principles that right-size equipment and minimize system power draw are inherently simpler to control, and lead to high efficiency and reduced utility costs.

Presenters: Trane engineers Susanna Hanson, Rick Heiden, Mick Schwedler, and Justin Wieman

After viewing attendees will be able to:

- 1. Understand and use the latest industry guidance for system design
- 2. Recognize the versatility coil selection and fluid control offer
- 3. Appreciate the importance of integrated controls on successful long-term system operation
- 4. Apply future chiller plant designs to maximize efficiency and simplicity while minimizing first cost

Agenda

- Introduction
- Industry requirements and recommendations
- Design choices
- System control

Presenter biographies

State-of-the-Art Chilled-Water Systems

SUSANNA HANSON | SENIOR PRINCIPAL ENGINEER | TRANE

Susanna is an HVAC systems development engineer for Trane. Her specialties are chilled water systems and energy codes.

During her 23 years with the company, Susanna has served in technical roles with diverse responsibilities, from TRACE support and development, to chiller and system development. Susanna is a Certified Energy Manager who helps the company achieve its Climate Commitment. She advises product development teams on the future of energy codes. She also influences corporate sustainability projects including system optimization, energy storage systems, and energy and water savings estimates.

She speaks and writes primarily on HVAC systems, energy storage, energy codes, and systems applications. She contributed to the Encyclopedia of Energy Engineering. She is currently serving ASHRAE on the Standards committee and is a trustee of the ASHRAE Foundation. She and has presented at ASHRAE society and chapter meetings throughout the U.S., Canada and Mexico. She was a 12-year voting member of ASHRAE 90.1 and received the ASHRAE Distinguished Service Award in 2015.

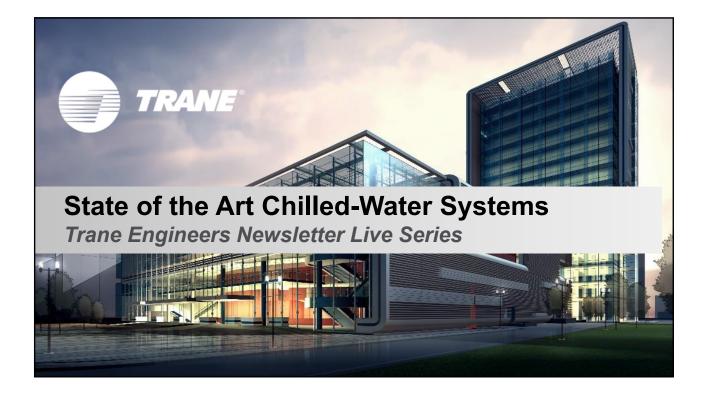
RICK HEIDEN | HVAC SYSTEMS DEVELOPMENT ENGINEER | TRANE

Rick is a systems development engineer and is responsible for leading teams to develop systems and sales tools aimed at reducing the energy intensity of the world. Rick's areas of interest are in hydronic systems, split-systems, mentorship, and project management. Rick has over 25 years of experience at Trane leading compressor development for centrifugal and screw-based chiller products and holds 7 patents.

Rick is a member of ASHRAE where he holds positions on several Technical Committees, SSPC 90.1 and Standards Committee and is a recipient of the Distinguished Service Award. Rick graduated from the University of Denver with a BS in mechanical engineering.

MICK SCHWEDLER | APPLICATIONS ENGINEER | TRANE

Mick has been involved in the development, training, and support of mechanical systems for Trane since 1982. With expertise in system optimization and control (in which he holds patents), and in chilled-water system design, Mick's primary responsibility is to help designers properly apply Trane products and systems. Mick provides one-on-one support, writes technical publications, and presents seminars.


Mick is an ASHRAE Fellow and serves as President Elect on the ASHRAE Board of Directors. He is a recipient of ASHRAE's Exceptional Service, Distinguished Service and Standards Achievement Awards. He is past Chair of SSPC 90.1 and contributed to the ASHRAE GreenGuide. Mick has been active on several USGBC technical and education groups, chaired the LEED Technical Committee and served on the LEED Steering Committee. Mick earned his BSME degree from Northwestern University and his MSME from the University of Wisconsin Solar Energy Lab.

JUSTIN WIEMAN | APPLICATIONS ENGINEER | TRANE

Justin joined Trane in 2001. As an applications engineer. he partners with customers providing them system design and product knowledge to develop and deliver efficient, innovative, and sustainable designs throughout North America, Europe and the Middle East. He works with product management, product support, planning, engineering, manufacturing, and other groups where the focus is optimizing chilled-water system design and control. Justin has held a variety of key roles within Trane including technical marketing, engineering, project and product support management. Justin has also led efforts to develop and deploy a suite of Design and Analysis tools that enable engineers to effectively design HVAC systems and develop the corresponding ife cycle cost analyses, which included product management of TRACE® 700 software.

Justin earned his bachelor's degree in Chemical Engineering from the South Dakota School of Mines and Technology.

APP-CMC076-EN

Copyrighted Materials

This presentation is protected by U.S. and international copyright laws. Reproduction, distribution, display, and use of the presentation without written permission of Trane is prohibited.

© 2021 Trane, a business of Trane Technologies. All rights reserved.

Learning Objectives

- 1. Summarize industry requirements for chilled water systems the different sections of Standard 90.1
- 2. Identify various resources for industry recommendations
- 3. Identify several system design choices
- 4. Summarize strategies for towers and pump control

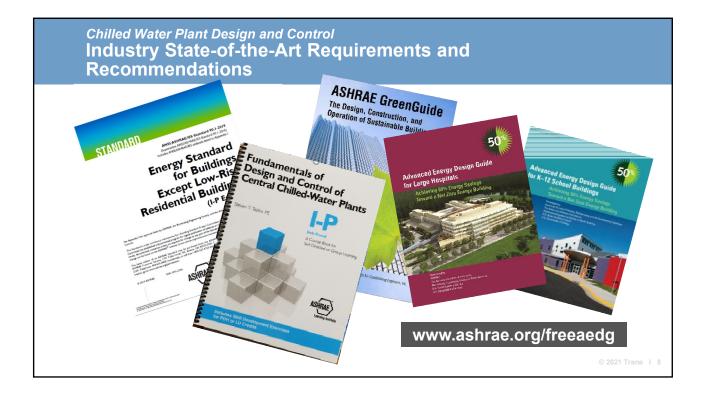
© 2021 Trane | 4

2

Copyrighted Materials

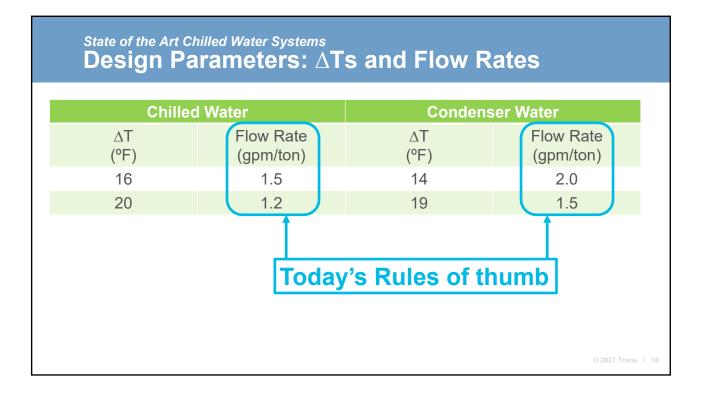
This presentation is protected by U.S. and international copyright laws. Reproduction, distribution, display, and use of the presentation without written permission of Trane is prohibited.

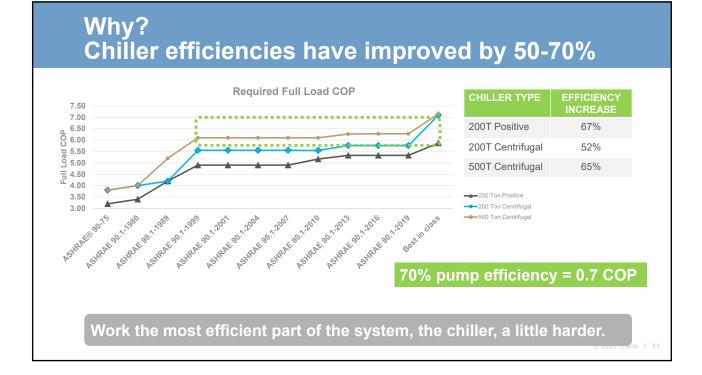
© 2021 Trane, a business of Trane Technologies. All rights reserved.


Learning Objectives

- Understand and use the latest industry guidance for system design
- · Recognize the versatility coil selection and fluid control offer
- Appreciate the importance of integrated controls on successful long-term system operation
- Apply future chiller plant designs to maximize efficiency and simplicity while minimizing first cost

© 2021 Trane. All rights reserved


Industry Guidance for System Design


TRANE

State of the Art Chilled Water Systems **Design Parameters:** Δ **Ts**

Source	Chilled Water	Condenser Water
ASHRAE 90.1 (since 2016)	15°F ∆T Minimum return 57°F	
ASHRAE Fundamentals of	Begin at 25°F ΔT	15°F ∆T
Design and Control of Central Chilled-Water Plants	Provides process to refine	
ASHRAE GreenGuide	12-20°F ∆T	12-18ºF ∆T
AEDGs (those with chilled water)	At least 15°F Δ T (hospitals) 12-20°F Δ T (K-12 schools)	At least 14ºF ∆T
		© 2021 1

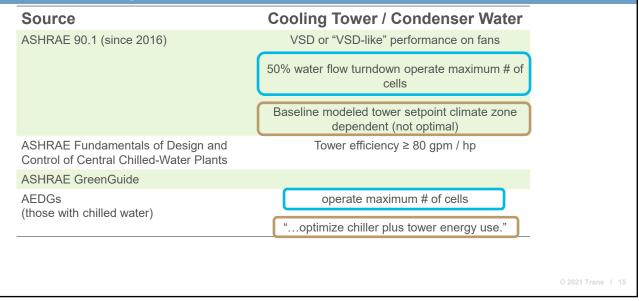
Effect of Ancillary Equipment at Part Load

LOAD		PAST PRACTIC	_		ASHRAE GreenGuide PRACTICE		
	*Cooling Tower Fan (kW/ton)	**Condenser Water Pump (kW/ton)	Tower + Pump (kW/ton)	*Cooling Tower Fan (kW/ton)	**Condenser Water Pump (kW/ton)	Tower + Pump (kW/ton)	
100%	0.053	0.057	0.11	0.036	0.019	0.05	
75%	0.071	0.075	0.15	0.047	0.025	0.07	
50%	0.106	0.112	0.22	0.071	0.038	0.11	
25%	0.212	0.224	0.44	0.142	0.076	0.22	

**Assumes constant speed CW pump

Ancillary energy is extremely significant at part load conditions

| 12


State of the Art Chilled Water Systems System Configurations

Source	Chilled Water	Variable Flow Options
ASHRAE 90.1	Variable flow in many cases	 Variable Primary Flow (VPF) Variable primary /
ASHRAE Fundamentals of Design and Control of Central Chilled-Water Plants	Variable flow in most cases	variable secondary
ASHRAE GreenGuide	Variable flow	
AEDGs (those with chilled water)	Variable flow ("strongly consider variable primary flow")	

Design Parameters: Chilled Water Controls

Source	Chilled Water
ASHRAE 90.1 (since 2016)	Chilled water reset OR Pump pressure optimization (PPO)
ASHRAE Fundamentals of Design and Control of Central Chilled-Water Plants	Pump pressure optimization
ASHRAE GreenGuide	Pump pressure optimization
AEDGs (those with chilled water)	Pump pressure optimization (K-12 Schools)

Design Parameters: Cooling Tower/Condenser Water Controls

Follow *Industry* Requirements and Recommendations

- ASHRAE/IESNA 90.1-2019
- ASHRAE GreenGuide
- ASHRAE Fundamentals of Design and Control of Chiller-Water Central Plants
- Advance Energy Design Guides

© 2021 Trane I 16

Design Choices

Plant Configurations

TRANE

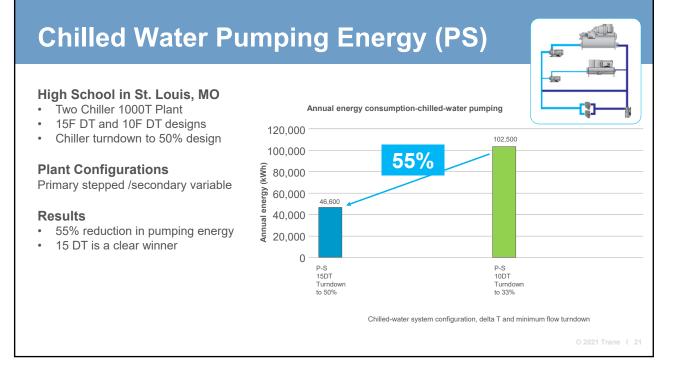
Industry Guidance Towards Zero Energy

ASHRAE Guidance

- Variable flow
- Energy model rulesets
- Recommended Delta T's

Industry guidance has set path to state of the art zero energy designs. Now how do we get there?

		System Configuration	Water flow control	CHWsec
	90.1 - 2019 (IgCC / 189.1)	PS @ 50% flow < 30% power	Fixed and Variable	15F
ENERGY CONSUMPTION	Greenguide – 5 th ed	PS and VS VS with demand controlled pressure reset	Minimize plant energy	12-20F 0.026 kW/t
Y CONSL	AEDG 30% Energy – 2008	VPF	Minimize plant energy	Modelling
ENERG	AEDG 50% Energy – 2011	VPF	Minimize plant energy	Modelling
	AEDG Zero Energy - 2018	VPF w/ demand controlled pressure reset	Minimize plant energy	Modelling


Turndown

$$Turndown = \frac{Flow_{minallowed}}{Flow_{design}}$$

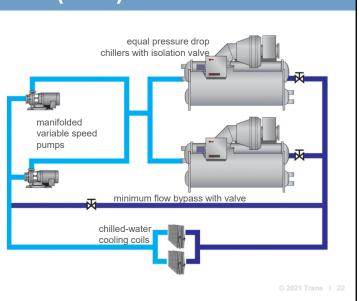
$$Turndown_{Chiller} = \frac{600 \ gpm}{1000 \ gpm} = 60\%$$

© 2021 Trane | 19

"Classic" Primary/Secondary (PS) **Characteristics** • Constant flow through chillers Stepped primary flow, variable secondary flow • • Easily accommodates differing chillers • Bypass line with no control valve chillers with dedicated **Benefits** constant flow pumps or bypass • Lower energy compared to constant flow systems Simple operation and control Easy to expand Can use chillers of varying size, age and capabilities • **Challenges and limitations** decoupler or bypass • Unable to efficiently respond to varying secondary Delta T i.e. low Delta T syndrome Stepped primary flow uses more energy than variable • chilled-water primary flow variable-speed, cooling coils secondary pump

Variable Primary Flow (VPF)

Characteristics


- · Bypass line with flow control valve
- Variable flow chillers of equal size, DP, LWT and DT
- Pump speed control via remote DP or AHU valve position

Benefits

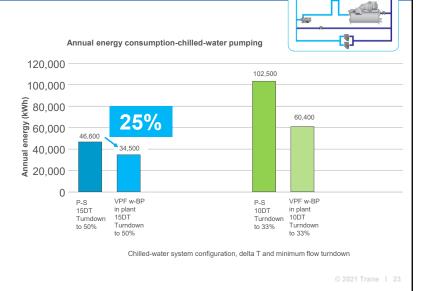
- Lower first costs and likely operating costs
- Lower pumping energy

Challenges

- Chillers must have adequate flow turndown
- More involved controls, but well understood today

PS vs VPF

High School in St. Louis, MO


- Two Chiller 1000T Plant
- 15F DT and 10F DT designs
- Chiller turndown to 50% design •

Plant Configurations

Primary stepped /secondary variable vs Variable primary flow

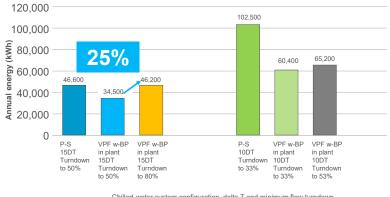
Results

- 25% reduction in energy
- 15 DT is a clear winner

Chilled Water Pumping Energy - VPF50% VS VPF80%

High School in St. Louis, MO

- Two Chiller 1000T Plant
- 15F DT and 10F DT designs
- Chiller turndown to 50% design . vs Chiller turndown to 80% design


Plant Configurations

Variable primary flow

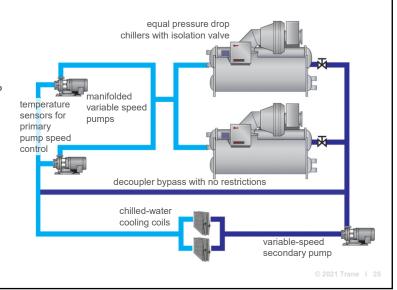
Results

- With turndown to only 80%
 - VPF looses its energy advantage
 - Control is more difficult
- 15 DT is a clear winner

Chilled-water system configuration, delta T and minimum flow turndown

Variable-Primary, Variable-Secondary Flow (VP/VS)

Characteristics


- Decoupling line
- Primary flow "matched" to secondary flow
- Secondary pumps control to remote dP or valve position

Benefits

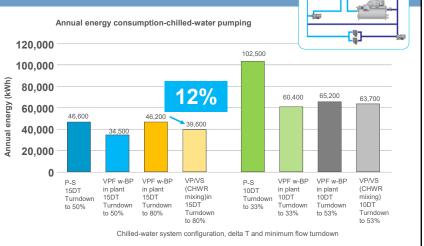
- Lowest pumping energy and costs for chillers with less flow turndown
- Less complex control by decoupling flows and pressures
- Adapts to differing chillers
- Easy existing system retrofit

Challenges

 Higher first costs because of primary pumps

VPF (80%) vs. VP/VS

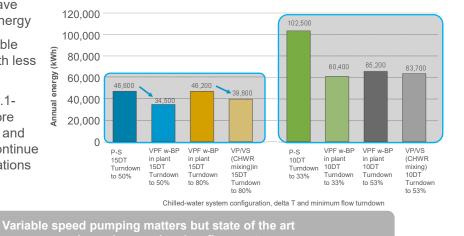
High School in St. Louis, MO


- Two Chiller 1000T Plant
- 15F DT and 10F DT design
- Chiller turndown to 80% design

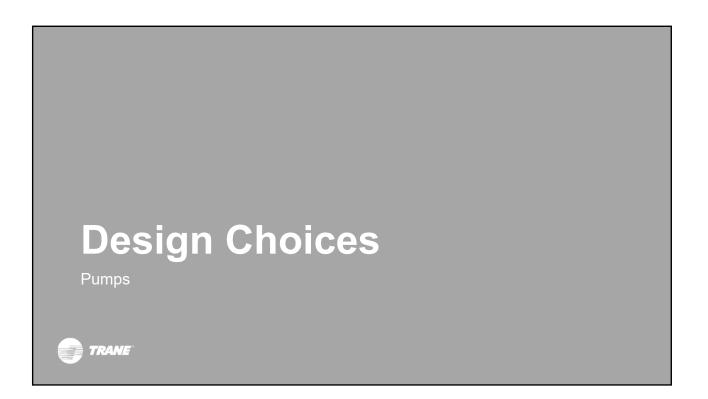
Plant Configurations

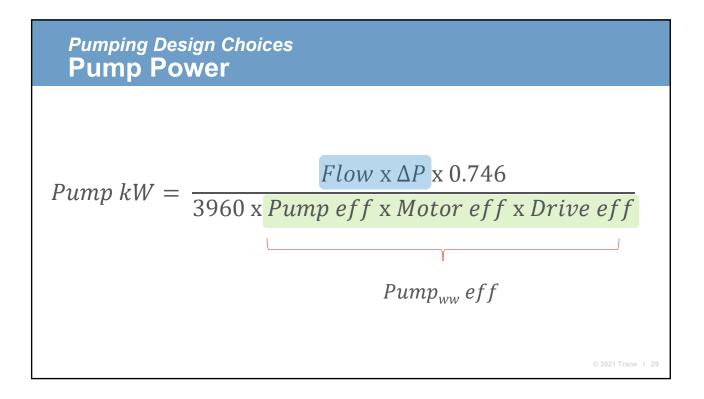
Variable primary flow vs. Variable primary, variable secondary

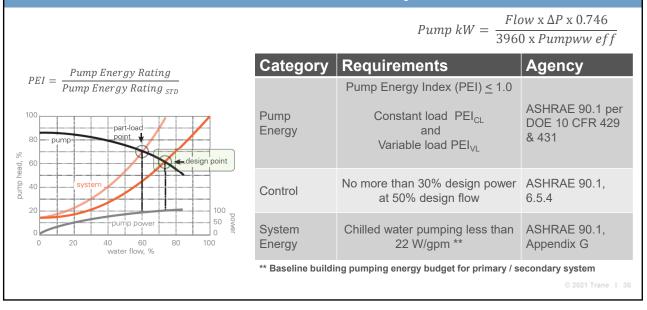
Results

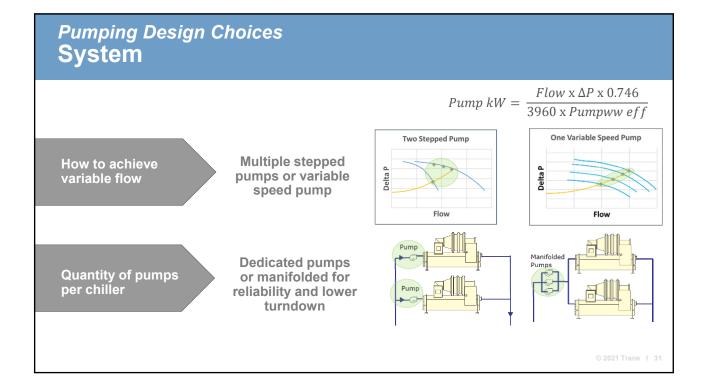

- 12% reduction in energy
- 15 DT is a clear winner

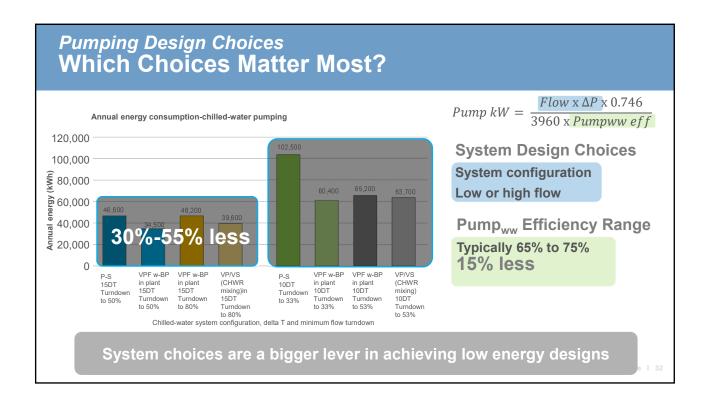
© 2021 Trane | 26

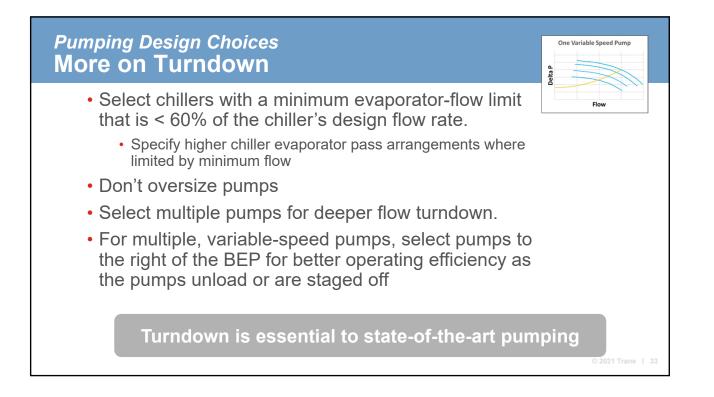

Chilled Water Pumping Energy - Summary


- Variable flow systems save significant amounts of energy
- Decoupled systems enable more energy savings with less complicated controls
- Systems designed to 90.1-2019 flow rates save more energy. Code adoption and operating savings will continue to drive system specifications in that direction


Annual energy consumption-chilled-water pumping


energy savings also requires low flow systems





Pumping Design Choices DOE and ASHRAE 90.1- 2019 Requirements

Myths about Coils

 They are selected for a certain delta T

Cooling Coils – Reselecting Existing

MBH	504	504		
WTR	10°F	16°F		
GPM/Ton	2.4	1.5		
EWT	44°F	41°F		
LWT	54°F	57°F		
GPM	101	63.0		
GPM reduction of 37.5%				

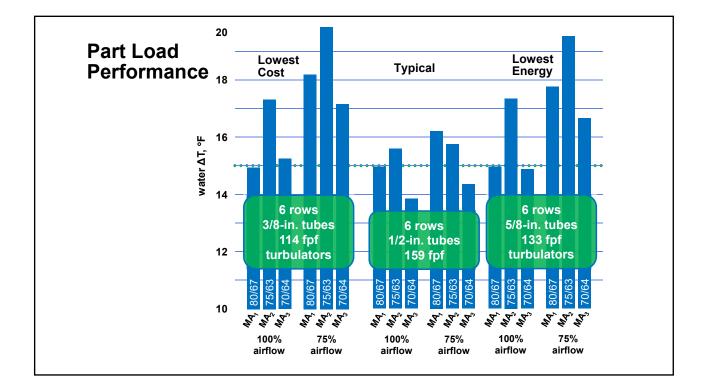
© 2021 Trane | 36

New Coil Selection

	Lowest Cost	Typical	Lowest Energy
entering water temp, °F	42	42	42
leaving water temp, °F	57	57	57
water ΔT, °F	15	15	15
tube diameter, in.	3/8	1/2	5/8
rows	6	6	6
fin density, fins/ft	114	159	133
fin design	high cap	high cap	high eff
turbulators	yes	no	yes
water flow rate, gpm	40	40	40
water velocity, ft/sec	2.7	2.8	2.1
water pressure drop, ft. H_2O	11.2	4.7	5.2
air pressure drop, in. H ₂ O	0.81	0.95	0.71
cost of coil	base - 30%	base	base + 15%
			© 202

Myths about Coils

- They are selected for a certain delta T
- Coil performance craters in laminar flow regime



© 2021 Trane I 38

Myths about Coils

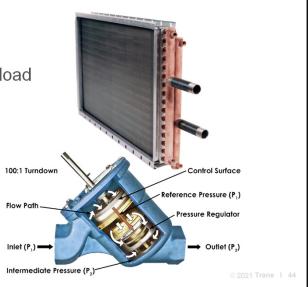
- They are selected for a certain delta T
- Coil performance craters in laminar flow regime
- Part load delta T is lower than full load

Chilled Water Pump (800 tons)

Flow rate	1920 gpm	1200 gpm
Pump head	110 feet	49 feet
Pump efficiency	80 %	80 %
Motor efficiency	95 %	95 %
Pump power	<mark>52</mark> kW	16 kW

In this installation: a 37.5% reduction in flow = nearly 70% reduction in chilled water pumping energy consumption

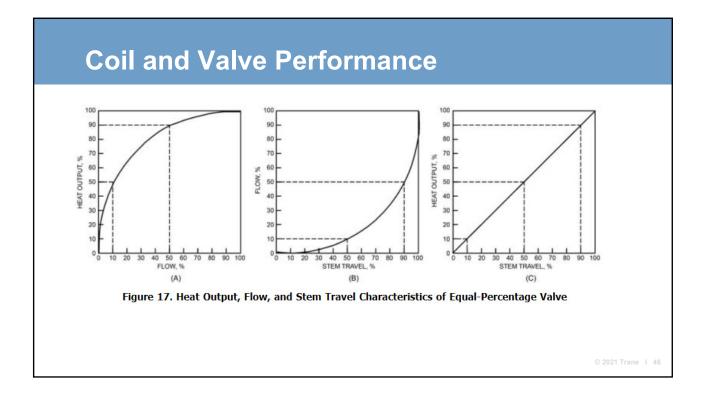
<section-header><section-header><section-header><image><image><image><image><image><image><image><image><image><image><image>

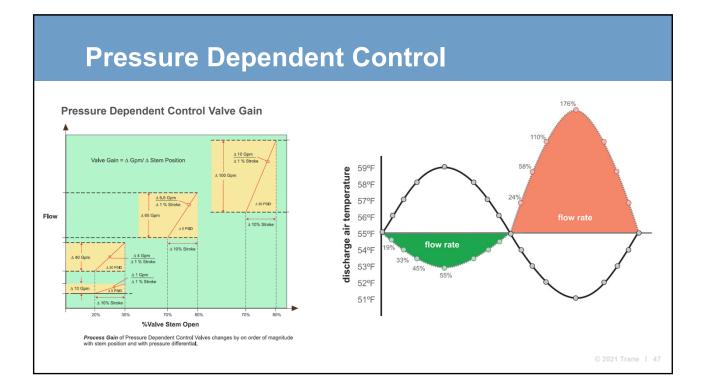

Cooling Cool Performance

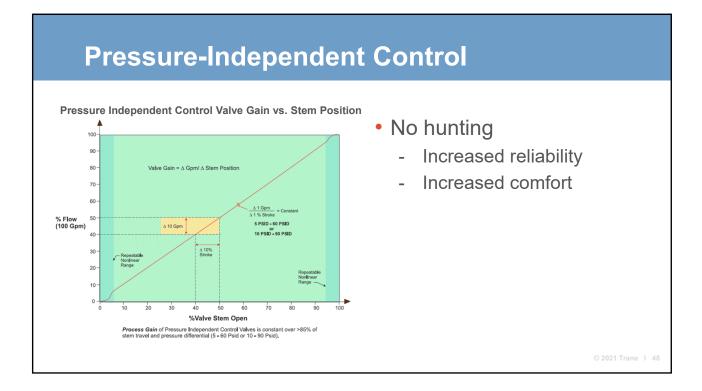
- New chilled water coils should use turbulators
- Existing chilled water coils should get colder water
- Part load delta T should be Higher than full load

Design Delta T and Greater is Achievable

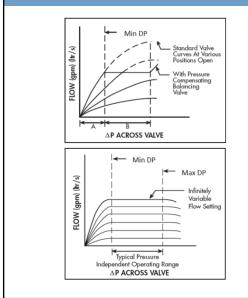
- 1. AHRI certified coil selections
- 2. AHU set point limits
- 3. Chilled water reset only at part load
- Pressure boosting no tertiary "mixing"
- 5. Properly selected, high quality control valves




The Role of Control Valves in SOTA Chilled Water


- Load α Flow
- "of course system dynamics have an effect"
- "modulating control valves respond to the cooling load/temperature in the space, even if the relationship is imperfect."
- the result is assuredly non-linear
 - unless a device creates constant pressure drop across the valve.

Comfort and efficiency are sacrificed when valves do not respond precisely to load

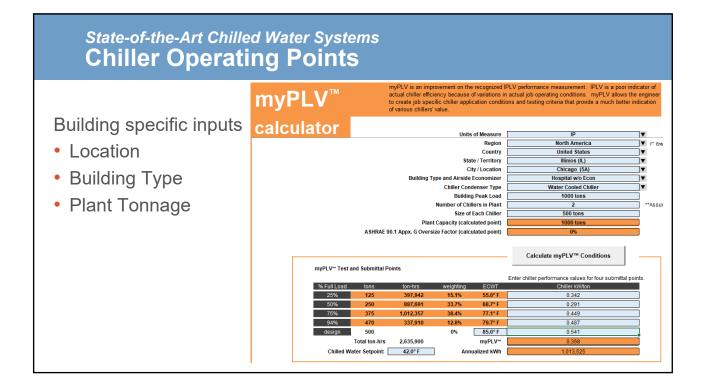

© 2021 Trane | 45

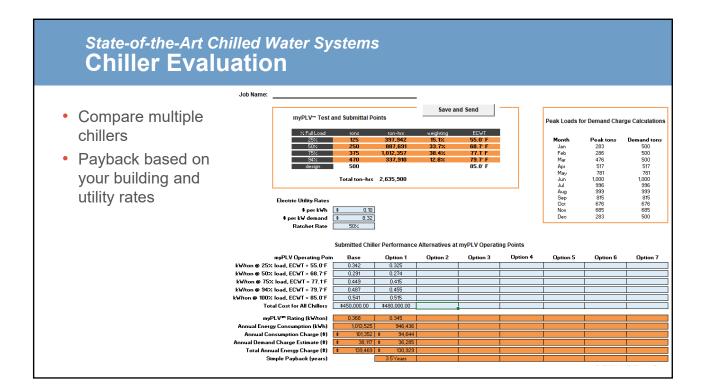
Flow versus Pressure Relationship – PD versus PI

- Decreased energy consumption
 - Chiller capacity restored
 - Pipe capacity restored
 - Lower flow rates, pump energy
- Requires valve position for pump control (∆P is close to constant)

How to Get Good Valve Performance

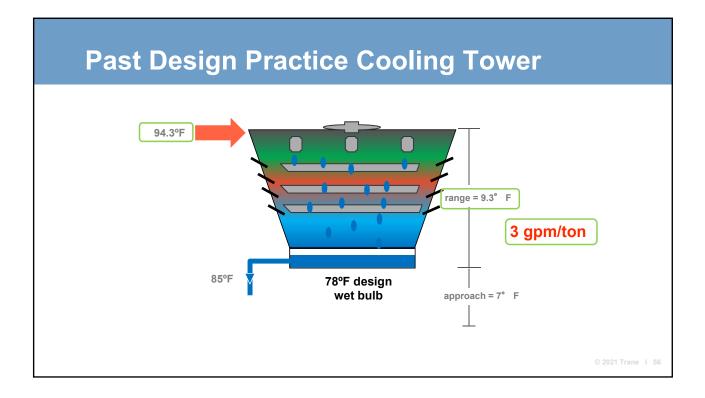
- Account for system interactions
 - Know where each valve is in the system
- Estimate the loads within reason
 - Determine valve Cv, flow, authority
- Successfully hand off to a team of
 - Installers
 - Controls contractors
 - System balancers, and
 - Commissioning agents
- Or...specify better control valves


© 2021 Trane | 50

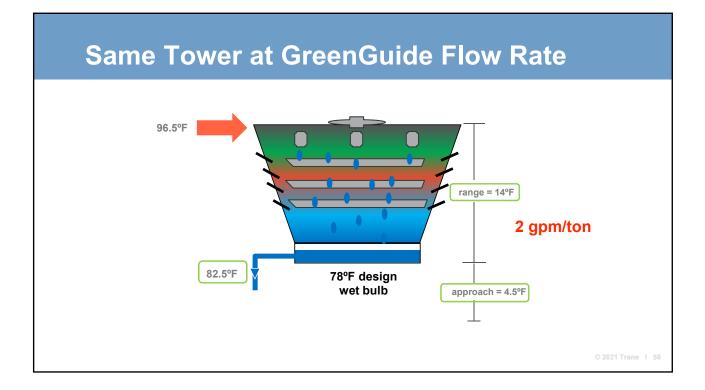


Chillers & cooling towers

TRANE

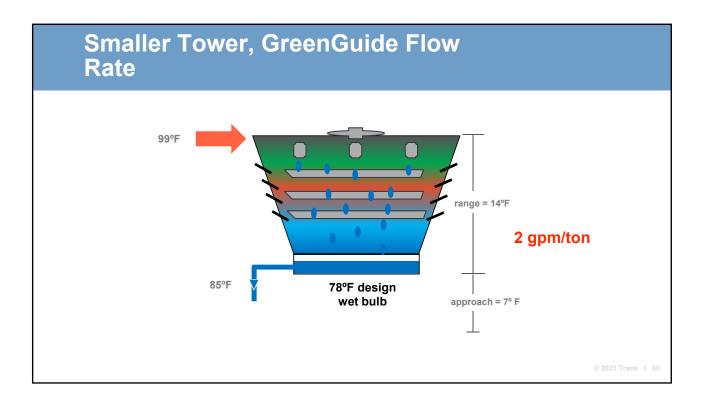


State of the Art Chilled Water Systems **Design Parameters:** Δ **Ts**


Source	Chilled Water	Condenser Water
ASHRAE 90.1 (since 2016)	15ºF ∆T Minimum return 57ºF	
ASHRAE Fundamentals of Design and Control of Central Chilled-Water Plants	Begin at 25ºF ∆T Provides process to refine	15°F ∆T
ASHRAE GreenGuide	12-20°F ∆T	12-18ºF ∆T
AEDGs (those with chilled water)	At least 15°F Δ T (hospitals) 12-20°F Δ T (K-12 schools)	At least 14ºF ∆T

Example Tower at Standard Rating Conditions

	Past Conditions
Flow rate (gpm)	1500
Capacity (tons)	500
Design wet bulb (°F)	78
Approach (°F)	7
Entering water temperature (°F)	94.3
Entering water temperature (°F)	85
Fan power (hp)	40



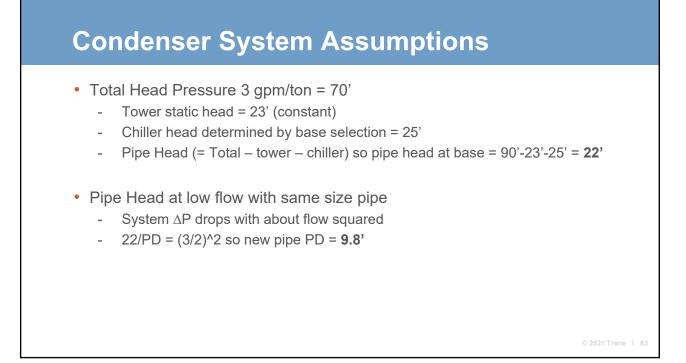
Same Tower, GreenGuide Flow Rate

	Past Conditions	SAME TOWER GREENGUIDE FLOW RATE
Flow rate (gpm)	1500	1000
Design wet bulb (°F)	78	78
Approach (⁰F)	7	4.5
Entering water temperature (°F)	94.3	96.5
Entering water temperature (°F)	85	82.5
Fan power (hp)	40	40

© 2021 Trane I 59

Smaller Tower, GreenGuide Flow Rate

	Past Conditions	SAME TOWER GREENGUIDE FLOW RATE	SMALLER TOWER GREENGUIDE FLOW RATE
Flow rate (gpm)	1500	1000	1000
Design wet bulb (°F)	78	78	78
Approach (ºF)	7	4.5	7
Entering water temperature (°F)	94.3	96.5	99
Entering water temperature (°F)	85	82.5	85
Fan power (hp)	40	40	25


© 2021 Trane | 61

State-of-the-Art Chilled Water Systems Pumps and Pipes

6 Heating, Ventilating, and Air Conditioning

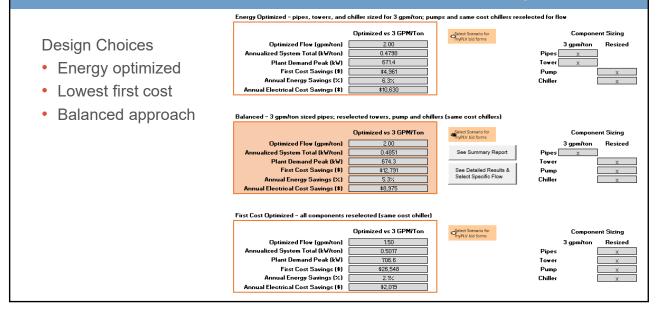
Table 6.5.4.6 Piping System Design Maximum Flow Rate in GPM

Operating Hours/Year	≤2000 Hours/Year		>2000 and ⊴4400 Hours/Year		>4400 Hours/Year	
Nominal Pipe Size, in.	Other	Variable Flow/ Variable Speed	Other	Variable Flow/ Variable Speed	Other	Variable Flow/ Variable Speed
2 1/2	120	180	85	130	68	110
3	180	270	140	210	110	170
4	350	530	260	400	210	320
5	410	620	310	470	250	370
6	740	1100	570	860	440	680
8	1200	1800	900	1400	700	1100
10	1800	2700	1300	2000	1000	1600
12	2500	3800	1900	2900	1500	2300
Maximum velocity for pipes over 14 to 24 in. in size	8.5 ft/s	13.0 ft/s	6.5 ft/s	9.5 ft/s	5.0 ft/s	7.5 ft/s

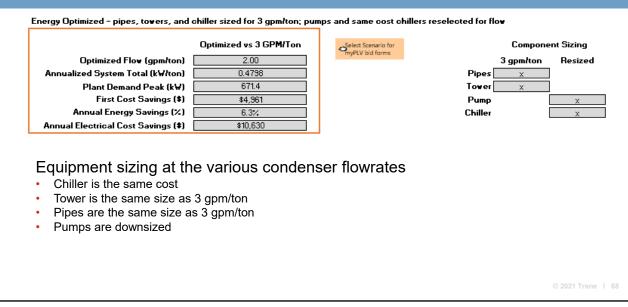
Condenser Water Pump

$$Pump \ kW = \frac{gpm \times \Delta P \times 0.746}{3960 \times Pump \ eff \ \times Motor \ eff \ \times Drive \ Eff}$$

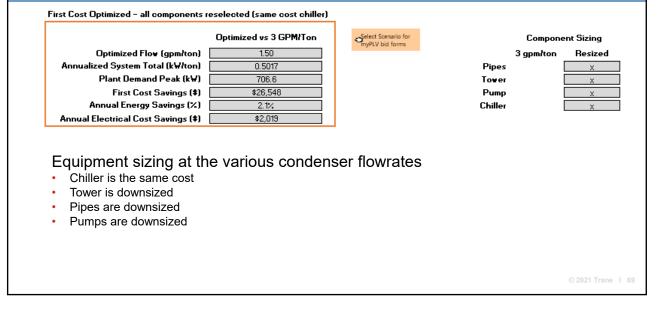
© 2021 Trane | 64

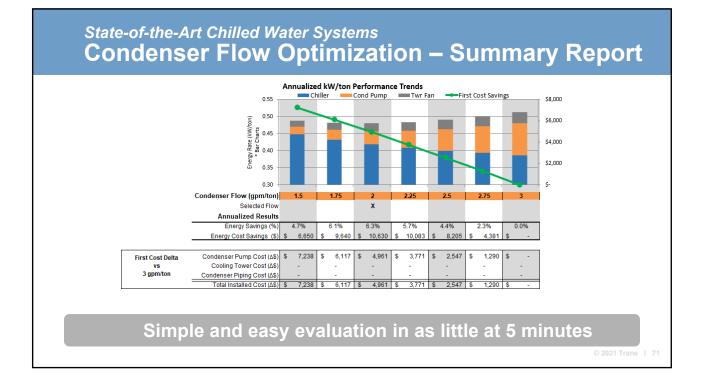

Pump kW at Design

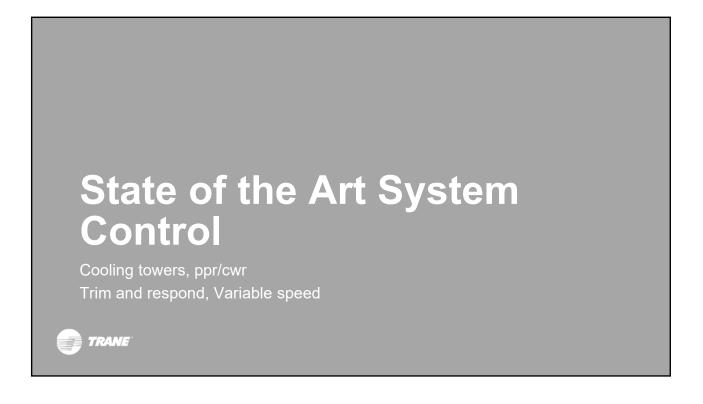
Description	Chiller PD (ft)	Tower PD (ft)	Pipe PD (ft)	Total PD (ft)	Total Flow (gpm)	Cond pump kW/ton
3 gpm/ton	25.0	23	22	70	1500	0.0530
2 gpm/ton same tower	12.4	23	9.8	45.2	1000	0.0228


© 2021 Trane | 65

State-of-the-Art Chilled Water Systems Condenser Flow Optimization - Inputs Enter Tower Selection Conditions at 3 gpm/ton Run Flow Optimizer Tower Selection Conditions at 3 gpm/ton **Design Parameter Inputs** Design Wet-Bulb from Weather Zone Data, 0.4% humid (°F) Maximum Wet-Bulb from Weather Zone Data (°F) 79.6 Prannum were built from wearner zone bater (*) Design Vert-Built (*) Tower Design Approach (*) Chiller Design Entering Condenser Vater Temperature (*) Condenser Pump Design Pressure Rise (It. H2D) Wet bulb 78.0 7.0 85.0 Delta P Cooling tower Control Tower Control Method Tower Control Method Chiller Tower Optimizat • Equipment Costs Minimum Entering Condenser Water Temperature (* F) 55.0 Assumptions Chiller Design Efficiency at Std AHRI Conditions (kW/ton) Chilled Water Setpoint (`F) 0.541 42.0 Tower Performance CTI Std-201 Certified (gpm/hp) 50.0 Cost Assumptions at 3 gpm/ton Electric Demand Charge (\$/k\) 10.00 Length of Cooling Season (months) 0.100 Electric Consumption Charge (\$/k\#h) Equivalent Pipe Length, Supply and Return (ft) 100 Default Values User Override (leave blank to use default) Cooling Tower Cost (\$/ton) Condenser Pump Cost (\$/each) Piping Cost (\$/ft)


State-of-the-Art Chilled Water Systems Condenser Flow Optimization – Summary Results


State-of-the-Art Chilled Water Systems Condenser Flow Optimization – Energy Optimized



State-of-the-Art Chilled Water Systems Condenser Flow Optimization – Lowest First Cost

	0 · · · · · · · · · · · · · · · · · · ·	ers (same cost chillers)	
	Optimized vs 3 GPM/Ton	Select Scenario for myPLV bid forms	Component Sizing
Optimized Flo v (gpm/ton)	2.00		3 gpm/ton Resize
Annualized System Total (kW/ton)	0.4851		Pipes X
Plant Demand Peak (k¥)	674.3		Tower x
First Cost Savings (\$)	\$12,791		
Annual Energy Savings (%)	5.3%		Chiller ×
Annual Electrical Cost Savings (\$)	\$8,975		
Equipment sizing at th Chiller is the same cost Tower is downsized Pipes are the same size a		ser flowrates	

Cooling Tower Control ASHRAE 90.1- 2019 Requirements

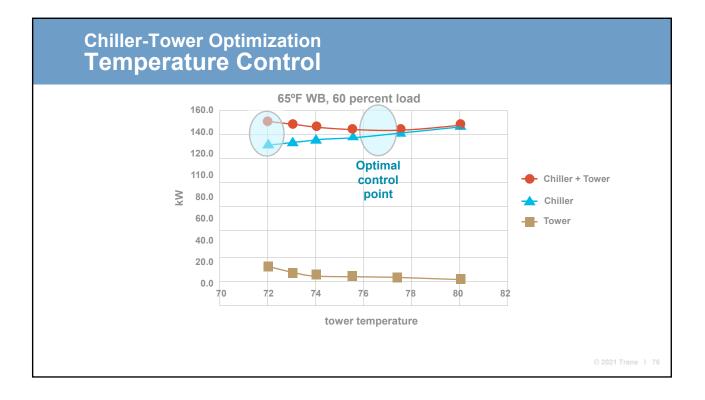
- Fan Speed Control: Total 5 hp or larger
 - Reduce fan power to 30% wattage at 50% airflow (VSD is usually applied)
 - Exceptions: Condenser fans: Serving multiple refrigerant circuits
 - Serving flooded condensers
 - Multicell heat rejection equipment with variable-speed drives
 - Operate maximum number of fans allowed by manufacturer
 - Control all fans to the same speed
 - Tower flow turndown to larger of
 - Flow produced by smallest pump at minimum speed
 - 50% of the design flow for the tower

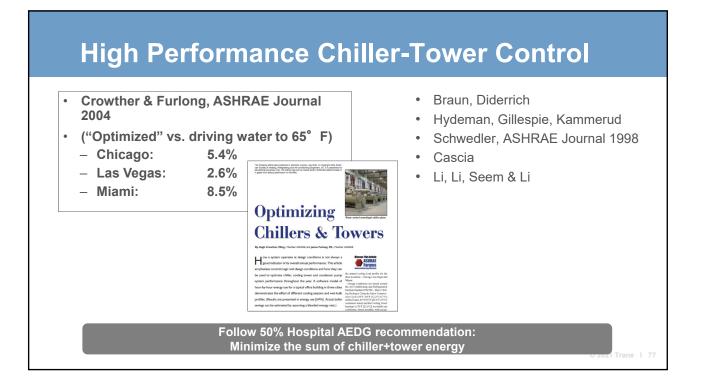
Cooling Tower Sequencing Two Fans Operating For Free Discharge Fans 20 kW $W2 = W1 \times (S2 / S1)^3$ Cooling Cooling W2 = 20 kW x (30 / 60)³ Tower Tower W2 = 2.5 kWTotal 2 Fan kW = 5 kW 75°F 89°F 2.5 kW 2.5 kW 1000 GPM Cooling Cooling Tower Tower 75°F 89°F 1000 GPM Operating multiple fans at part speed saves more energy than one fan at full speed and one fan off

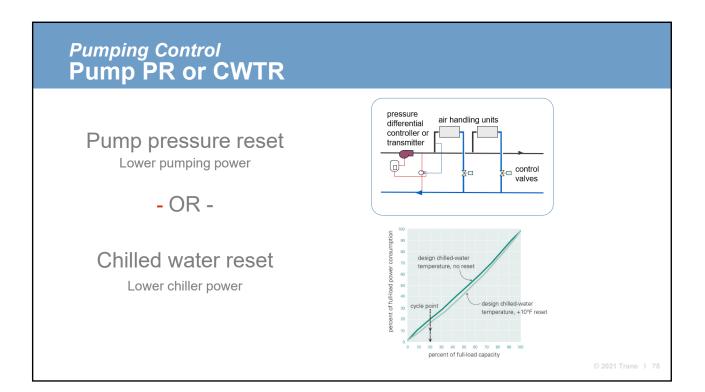
Cooling Tower Cell Sequencing

- · Operate as many tower cells as possible
 - MUST keep tower fill wetted
 - Stay above minimum cell flow rate
 - Tower providers may provide different nozzles or "nozzle cups"
 - Limit fan speed when additional tower cells are operating

where,			
	the numb	per of tower cells no	rmally
-	the numb	per of additional tow	er cells
0,000	su nonn	al" operation	
able 3. Ma	ximum t	ower fan speed wh	en operating
Table 3. Ma additional t	ximum t cower cel	ower fan speed wh lls Number of	
Table 3. Ma additional t Number of cells nor	ximum t cower cel f tower mally	ower fan speed wh lls Number of additional tower	Maximum
Table 3. Ma additional t	ximum t cower cel f tower mally	ower fan speed wh lls Number of	Maximum fan speed
Table 3. Ma additional t Number of cells nor	ximum t cower cel f tower mally	ower fan speed wh Is Number of additional tower cells operating (A) 1	Maximum fan speed 79%
Table 3. Ma additional t Number of cells nor	ximum t cower cel f tower mally	ower fan speed wh lls Number of additional tower	Maximum fan speed


1

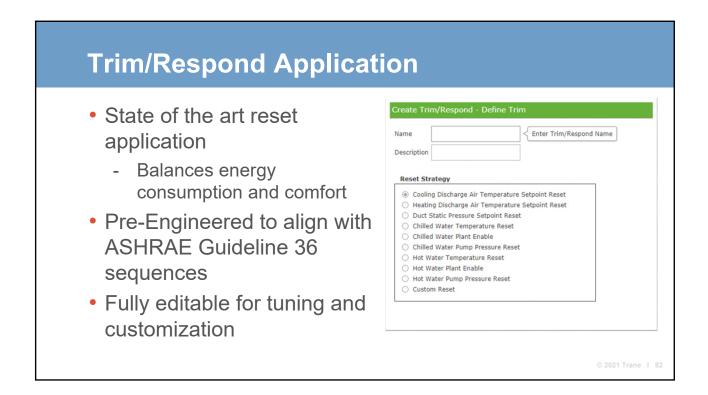

87%


2

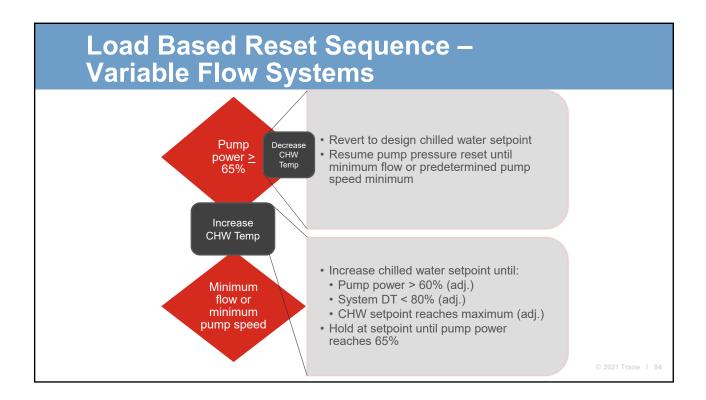
 $N \times hp/fan = (N + A) \times hp/fan \times (MaxSpd)^3$

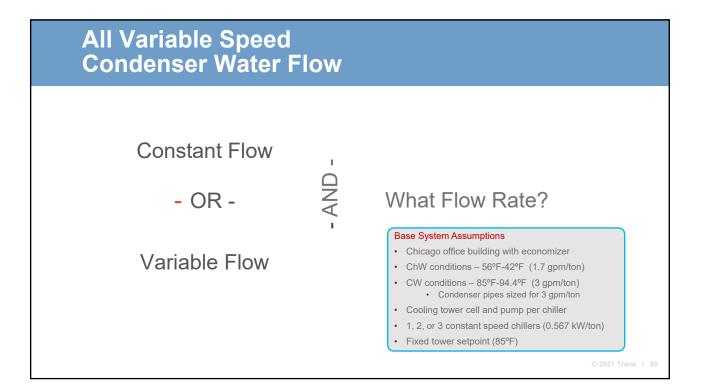
© 2021 Trane | 75

		nt Speed Chiller plus p power at LEWT	Variable Speed Chiller plus pump power at LEWT				
% Load	44	Reset to 48	44	Reset to 48			
75%	Flov	too high at 48	Flow	too high at 48			
50% at 65F ECWT	82.7 kW	89.9 kW 9% worse	50.8 kW	48.6 kW 4% better			
25% at 65F ECWT	51.8 kW	51.6 kW 0.3% bette r	30.2 kW	27.2 kW 10% better			
50% at 75F ECWT	89.3 kW	95.9 kW 7% worse	66.6 kW	63.4 kW 5% better			
25% at 75F ECWT	56.5 kW	56.1 kW 0.7% better	41.8 kW	38.1 kW 9% better			


Consider Resetting Chilled-Water Temp

- Flow is constant
- Healthy delta T
 - 15-20° F design delta T systems
- Variable speed chillers, at low load conditions (< 50% system load)
- Waterside free cooling is taking place
- Minimum flow has already been reached using pump pressure reset variable primary


© 2021 Trane I 80


SOTA control

TRANE

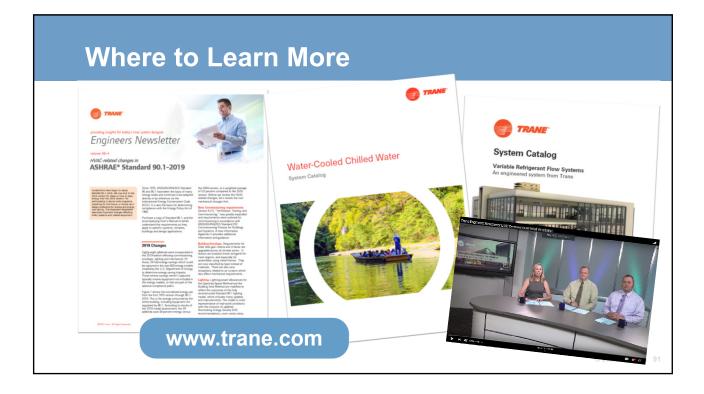
Trim/Res	spoi	nd Application
0		suite for status, editing, troubleshooting, adjusting d overriding the application
AHU 12 DAT Reset		Customer - Canatione 6.12 VP / 4.55 VB /
C Applications		Control Point Information
Status Alarms Data Logs Configure Status Log Data		The device being controlled is VAV AHU 12 The control point is Discharge Air Cooling Setpoint BAS The current value is 57.1 °F The desired value is 57.1 °F
Name Run Node	Value	Previous Action Application attempted to trim 01:51 ago resulting in an output of 57.1 °F.
Operating Node System Requests	Trimmin 2.00	System-OK Status Occupied: true
Ignored Requests Threshold Last Modified Time	2.00 Jul 10, 2	Trim Criteria In order to trim (raise the setpoint), the number of requests will need to be less than or equal to the number of requests ignored (2) when the application runs in 00:09.
		Response Criteria In order to respond (lower the setpoint), the number of requests will need to be greater than the number of requests ignored (2) when the application runs in 00:09.
		© 2021 Trane 83

Chilleı Type	Cooling Cond Tower Water Fan Flow Rate		Cond Tower Water Control Flow Type Method	System Performance (Annualized kW/ton)					
(gpm/ton)			0.4 0.5	0.6 0.7	0.8	0.9	1.0 1.1		
VS	VS	3	CF	85° F			_		
VS	VS	3	CF	Opt			•	_	●1 chiller ■2 chillers
VS	VS	2	CF	Opt		.			▶3 chillers
VS	VS	3	VF	Opt				0.000	lenser flow-towe
VS	VS	2	VF	Opt					ller optimization
VS	VS	3	VF-	Opt			`		

TRANE

State of the Art Chilled Water Systems **Design Choices**

- System
 - Variable Primary Flow (VPF) or
 - Variable Primary / Variable Secondary (VP/VS)
- Variable speed pumps
- Coils
 - $\Delta T 15^{\circ}F$ or greater
 - Select for part load operation
 - Turbulators offer great performance
- Valves
 - Select each valve properly or install pressure independent valves


- Chillers
 - Reliable
 - Efficient
 - Low emissions
- Select towers with ΔT 12°F or greater
- Analyze the system to optimize
 - Energy reduction or
 - First cost or
 - A balanced approach

© 2021 Trane | 89

State of the Art Chilled Water Systems **Design Choices**

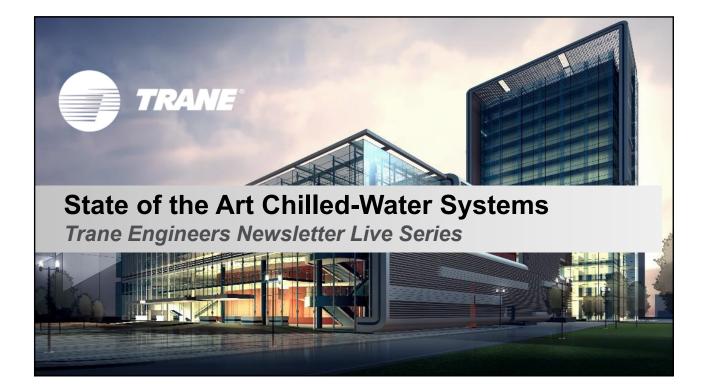
- · Chilled water pump pressure optimization or temperature reset
- Chiller tower optimization: Minimize sum of chiller plus cooling tower fan energy
- Cooling tower cell
 - · Operate more, but keep above their minimum flow rate
 - Cap maximum fan speed to ensure savings

© 2021 Trane | 90

Continuing Education Courses *on-demand, no charge, earn LEED, PDH, AIA credits*

NEW Courses

- Impact of DOAS Dew Point on Space Humidity
- HVAC Considerations for Indoor Agriculture
- Electrification/Decarbonization of HVAC Systems
- Applying VRF for a Complete Building Solution



© 2021 Trane | 92

APP-CMC076-EN

Trane Engineers Newsletter LIVE: State-of-the-Art Chilled-Water Systems APP-CMC076-EN QUIZ

- 1. What is the minimum ΔT for coil selection required by ASHRAE 90.1 since 2016?
 - a. 10°F
 - b. 12°F
 - c. 15°F
 - d. 20°F
 - e. There is no requirement
- 2. What condenser control methods are recommended by the Advanced Energy Design Guides?
 - a. Operate the maximum number of cooling tower cells possible, while ensuring required flow rate
 - b. Make the tower water temperature as cold as possible to optimize chiller performance
 - c. Control tower temperature to optimize chiller plus tower energy use
 - d. A and B
 - e. A and C
- 3. True or False: Coil waterside ΔT should be expected to fall at part load.
- 4. True or False: Pressure independent control valves make chilled water systems work better.
- 5. What is the best metric to determine chiller efficiency?
 - a. Full Load Kw/ton
 - b. IPLV/NPLV
 - c. Neither
- 6. True or False: Designing a chiller plant with low condenser flow can reduce the cost of this system and increase the efficiency of the chiller plant.
- 7. True or False: A chiller that can reduce flow 20% before reaching its minimum flow is a good candidate for VPF application.
- 8. Which system design choice(s) typically saves more plant energy?
 - a. Low flow
 - b. High flow
 - c. System configuration
 - d. High efficiency pumps

Resources

State-of-the-Art Chilled-Water Systems

ANSI/ASHRAE/IES Standard 90.1-2019—Energy Standard for Buildings Except Low-Rise Residential Buildings (www.ashrae.org/technical-resources/bookstore/)

ASHRAE GreenGuide: Design, Construction, and Operation of Sustainable Buildings (www.ashrae.org/technical-resources/bookstore/)

Fundamentals of Design and Control of Central Chilled-Water Plants (https://www.ashrae.org/professional-development/self-directed-learning-group-learning-texts/ fundamentals-of-design-and-control-of-central-chilled-water-plants)

https://www.ashrae.org/freeaedg